
USING QUERY LANGUAGES AND MOBILE CODE TO REDUCE SERVICE
INVOCATION COSTS

R. Szymanski*, N. Palmer
AMSRD-CER-C2-BC

Fort Monmouth, New Jersey 07703

T. Chase
Dept. of Chemistry, Medical Technology and Physics

Monmouth University
West Long Branch, New Jersey 07733

ABSTRACT

1.1 The Problem with Net-Centricity

At a core level, having unlimited access to any data
you could ever possibly want is incredibly valuable.
Commanders in the field will be able to solve problems
and get answers to questions that they never could before.
However, access to all this data comes at a cost. The most
obvious issue is bandwidth availability. Doorways will be
opening into previously “stove-piped” systems at an amaz-
ingly fast rate. The available bandwidth, however; may
not be able to keep up the pace and SOAs (such as NCES)
will need to make accommodations for operating in
“bandwidth constrained” environments (Pane and Joe,
2006).

Another issue involved with creating services and
hosting them on a SOA is service granularity. Service
interface designers must continually wrestle with the level
at which their service provides its functionality. Too low
and you end up with clients having to continually make
calls to get all the data they need, resulting in unnecessary
overhead. Interfaces designed at too high a level may
force clients into getting much more data than the client
needs. Receiving more data than is required not only ag-
gravates the bandwidth usage, but also requires the client
to spend extra time parsing the received message and
throwing away information that isn’t required.

One approach to addressing interface granularity is-
sues is to meet with all potential clients during the design
stages and customize the interface methods to exactly suit
their needs. This causes several additional problems.
First, in a SOA world, you may not know all your potential
clients and many of your future clients may not yet exist.
Further, even if you could identify all your clients, their
needs will most certainly not remain static throughout your
service’s lifecycle; your interface may have to be adapted
as their needs change. While adapting to suit your clients
is a good practice, too many changes to an interface will
result in broken applications.

This paper discusses an approach to reducing the
overhead associated with service invocation while at the
same time increasing the usefulness of the data returned
by services. The described technique is based on shifting
computation from the client side to the service side
thereby reducing the number of calls the client must
make to the service. It is shown that reductions in the
number of service invocations can be substantial when
the called service is part of a client initiated search algo-
rithm. Performing the search on the service side greatly
reduces the number of required service invocations. As a
concrete example, this paper describes work being per-
formed by CERDEC C2D (Communications Electronics
Research, Development, and Engineering Center –
Command and Control Directorate) at Fort Monmouth,
NJ to expose a military mission plan as a web service
through the use of simple SQL-like (Structured Query
Language) statements optimized for mission data query.

1. LOOKING TO THE FUTURE

The Army (and in fact the Department of Defense as
a whole) is moving towards a Net-Centric world where
any soldier can get any information at any time. The
Army is in the process of developing infrastructures,
such as the Defense Information Systems Agency’s
(DISA) Net-Centric Enterprise Services (NCES). NCES
is comprised of a set of Core Enterprise Services (CES)
that act as the foundation for the Service Oriented Archi-
tecture (SOA). Among various jobs, these CES provide
important service discovery and data mediation func-
tional components. Essentially, the CESs answer the
questions, “Where is service X?” and “How can I talk to
service X?” The ultimate goal is that systems will be
able to access any information from any place at any
time.

 1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 NOV 2006

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Using Query Languages And Mobile Code To Reduce Service Invocation
Costs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AMSRD-CER-C2-BC Fort Monmouth, New Jersey 07703

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002075., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Our approach to addressing both the bandwidth and
service granularity problems is to define service inter-
faces in terms of a query language. The flexibility of a
query language permits clients to specifically request
exactly what is needed from the service and, as a result,
reduce the required bandwidth by optimizing the service
response and by shifting searching algorithms from the
client to the service.

2. QUERY-BASED SERVICE RESEARCH

Prior to detailing our approach to building a query-
based service (QBS), we’ll provide further detail justify-
ing why there is a need for such a solution.

2.1 Remote versus Local Function Calls

You can think of a call to a service method as essen-
tially a remote function call. It is a request for
information or data processing handled outside of your
application. There are many reasons for calling a remote
service as opposed to calling a local function. Some
examples include:

• Data locality. Services may be co-located with data or
the data may be too large to transport in its entirety.
Terrain databases provide a good example of this case.

• Intellectual property. Service providers may own the
rights to specific algorithms and wish to retain control.

• Processing power. Services may run on larger ma-
chines. Clients running on less capable hardware can
off load computation.

• Deployment control. Centralizing service code on
servers may simplify the deployment and configura-
tion management associated with the service software.

A fundamental problem with SOAs is the cost of
service invocation: calling a service will cost more than
invoking a similar function locally. This will be dis-
cussed more fully in the following sections. For all their
benefits, services are in no way free and as our research
has shown, service invocation costs can be orders of
magnitude greater than comparable local function calls.
As a result, care must be taken in designing the interface
to a service in order to minimize the service invocation
cost. Further, developers producing service client code
need to be cognizant of the invocation costs and design
their clients appropriately.

2.2 Service Invocation Patterns

In order to study the cost of service invocations we
examined several different invocation patterns. It was

our belief that typical service invocations are characterized
by searching algorithms. Such patterns are frequently
found in military command and control (C2) systems. For
example, finding units that need refueling requires search-
ing all units for those meeting the “needs fuel”
requirements. Likewise, finding a helicopter landing zone
requires searching possible areas for one that meets land-
ing zone requirements. The ways in which to architect the
communication between a client and service using this
referencing pattern are characterized by the following three
cases illustrated in Figure 1.

Figure 1. Alternative Invocation Architectures

Case A: Server Side. A client makes a request to the
service for information. The request is processed entirely
on the server side. The server processes the request by
searching its local repository for the data requested by the
client and then returns the response. An example might be
“find all units requiring fuel” and the response would be
the set of units.

Case B: Client Side. The client requests some (large)
subset of all of the information residing on the server. The
client then searches through the returned data. An example
might be “get all units” and the client then searches for the
units that require fuel.

Case C: Combo. A blending of cases A and B. The
client makes a request for some subsection of the server’s
data. The server must search through its information and
pass some portion back to the client. The client then con-
ducts its own searching and further narrows down the data
set to the optimal information.

A case can be made for the appropriateness of each
approach. There are certainly times where it makes sense
to implement the Combo pattern. Situations like grid com-
puting and shared computational systems often take this
approach, dividing computation between the client and the
server. However, in most settings, the Server Side is the
optimal path. In this case, the service narrows down the
data to exactly match what the client is looking for, thus

 2

 3

when the client receives the data, there is no additional
searching or processing involved. Further, since the
search is performed at the server, the client need not per-
form multiple service invocations, as might be the case
in the Client Side approach. Using the server side, there
is less wasted data transfer and fewer service invoca-
tions.

Our experience indicates that most clients utilize the
Combo pattern. The reason is simple: developers find a
service that is “close to what they want” and call it. The
service returns a data set that has more information than
the implementer needs. After receiving the service re-
sponse, the client has to search through the data for the
relevant information. If the service provider is amenable
to changing his service, subsequent interface revisions
become more and more specialized such that the service
more optimally supports the data the client requires. In
return, the client will do less processing on the resultant
data set. Ultimately, if the interface returns exactly what
the client needs, the Combo pattern evolves into the Ser-
vice Side pattern. This becomes the optimal state
because there are no wasted resources: the client gets
exactly what it wants in one call.

Clearly this violates one of the premises of SOA in
that the service interface is tightly coupled with the needs
of a specific client. One of the benefits of SOA is that
services are reusable and for reusability to be powerful a
service should be usable by more than one client. The
solution lies in providing a service interface that the cli-
ent can customize at service invocation time.

2.3 Researching Web Service Overhead

A key premise on which our QBS hypothesis rests is
that the overhead of service invocation is substantial. At
its most basic level what we’re looking for is the amount
of overhead (both in processing time and bandwidth us-
age) that a web service function call adds to the
invocation of the given function. In order to explore this,
we need to better understand how much overhead is as-
sociated with a local functional call and compare that to
a similar call over a web service interface. The delta
then becomes the net service invocation overhead.

Our initial research looked at the overhead costs for
local function calls versus the same function imple-
mented as a service. We chose to implement a squaring
function as the function being invoked. Due to the ex-
periment, the actual time to compute the function is
immaterial to the results. In order to understand the
overhead involved, we can look at the costs in relative
terms. Given that the overhead for a local call (OL) can
be defined as the processing time for the call (P) added
with the time required to make the call (TL), we can say
that:

OL = P + TL

Additionally, we define the overhead for a service call
(OS) to be the sum of the processing time (P), the time re-
quired to make the service call (TS), and the time required
to make the same local call (TL):

 OS = P + TS + TL

We’d like to determine the overhead associated with
implementing a service. Calculating the difference be-
tween a service invocation and a local invocation gives:

OS – OT => (P + TL) – (P + TS + TL)

 => P – P + TL – TL + TS

 => TS

Ultimately, we can see that by measuring the differ-
ence between the times associated with implementing
identical functionality both as a local call and as remote
service call, we can determine the processing overhead for
the remote call. In essence, TS is the “wasted” time spent
processing a service call devoid of the cost of actually per-
forming the called function. Ideally, we’d like to minimize
TS as much as possible. We’d prefer it if we could have TS
as close as possible to TL, because that would eliminate the
excess overhead associated with service invocation.

2.4 Our Approach to Measuring Invocation Costs

Our research explored the associated overhead costs in
terms of both processing time and bandwidth associated
with making remote service calls. We implemented the
squaring function in both Java and C# and conducted tests
both locally and remotely and across implementation lan-
guages. The cross implementation experiment was
performed because we were interested in the relative effi-
ciencies of Java vs. C#’s implementation of web services.
The experiment evaluated the following six cases:

1. Local Java call.
2. Local C# call.
3. Java client to a Java web service.
4. Java client to a C# web service.
5. C# client to a C# web service.
6. C# client to a Java web service.

We used version 1.5 of Java deployed to a Sun Java
System Application Server Platform Edition 9. C# was
implemented in Visual Studio 2005 with .Net version 2.0
and deployed to Visual Studios internal debug web appli-
cation server.

We measured both the processing time involved with
making local and service calls as well as the bandwidth
utilized by the remote service calls. We did this by run-

ning varying numbers of requests (from 1 to 1 billion)
across varying array sizes (from 8 Bytes to 80 MB,
where 1MB = 106 Bytes). Each request consisted of a
call to a function that calculated the square of each ele-
ment in an argument array. The array varied in size as
described above. Due to processing limitations and time
constraints not all pairs of numbers of requests and sizes
were completed. For instance, we could only complete a
run of 1 billion requests at the smallest size (8B). Be-
cause of this limitation, it became apparent that the most
useful subset of data was where 100 requests were sent at
varying array sizes of 8B, 80B, 800B, 8KB, 80KB, and
800KB. Depicted in the next section are our results for
the average of those runs.

The processing time for a local call is defined as the
time it takes to complete the following steps:

1. Build data array
2. Pass elements to square function
3. Square elements in array
4. Store results

Processing time for a remote call gets a little more

complicated as it includes the above steps, plus every-
thing that is required to implement a service:

1. Build data array (Client)
2. Build service request (C)
3. Send service request (C)
4. Parse request (Service)
5. Pass elements to square function (S)
6. Square elements in array (S)
7. Build service response (S)
8. Send service response (S)
9. Parse response (C)
10. Store results (C)

It should also be noted that because our array sizes

increase exponentially (8 * 101, 8 * 102, and so on), look-
ing at a graph of overhead compared to array size shows
deceiving results. For instance, the bandwidth overhead
for 800KB is far greater than an 80KB message. While
this seems obvious, plotting them on the same chart can
lead to erroneous conclusions. As a result, while we’ll
show both the linear and exponential scales below, one
should take caution when drawing conclusions from the
linear charts.

2.5 Our Results (Bandwidth)

First, we’ll take a look at the bandwidth overhead
for service calls. Shown below in Figure 2 is the associ-
ated overhead for all 4 types of calls. Note that there is
no bandwidth overhead for local calls.

LOG of BW Usage

0

1

2

3

4

5

6

7

8

8 80 800 8,000 80,000 800,000

Array Size (B)

LO
G

 o
f M

es
sa

ge
 S

iz
e

(B
)

Java-C#
C#-C#

C#-Java

Java-Java

Figure 2. Bandwidth overhead for service calls (log10)

There are several interesting results that one can de-
rive from this chart. First, it’s worth noting that all 4
implementations show nearly the exact same results. What
this means is that both the Java and C# clients and services
use similar service encoding techniques. This demon-
strates that both SOAP implementations are nearly the
same and are most likely the most efficient. Alternatively,
they could both be equally inefficient, but this seems
unlikely.

Another interesting note is that there appears to be
nearly identical overhead for 8B and 80B, but starting
around 800B, the overhead increases steadily. In fact, it
never levels off for the data that we are looking at. This
essentially means that as you increase your message size
beyond some length, you’ll continually pay a penalty for
the method call.

BW Usage of Service Requests

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

9,000,000

10,000,000

8 80 800 8,000 80,000 800,000

Array Size (B)

M
es

sa
ge

 s
iz

e
 (B

)

Java-C#

C#-C#

C#-Java

Java-Java

Figure 3. Bandwidth overhead for service calls

Also, the penalty increases as the message size in-
creases. The most likely culprit in this case is probably the
fact that the messages are getting packetized at some point
around 800B. So, prior to 800B the message is completely
contained in one packet. Beyond that point, they are get-
ting packetized and subsequently have additional header

 4

and footer information added; therefore, the overall mes-
sage size increases.

The non-logarithmic scale (Figure 3) is also interest-
ing. Obviously, on the exponential scale, the results are
much more dramatic, but there is a visible jump in mes-
sage sizes. However, it only shows up above 8KB on
this chart. What is more noticeable in Figure 3 is that
there is a significant overhead in the Java implementa-
tion that is not present in the C# implementation at the
higher end. In fact, C# shows about a 30% improvement
on bandwidth efficiency. The C#-Java and Java-C# im-
plementations fall in between the others. This may be a
result of slightly differently constructed SOAP messages
on the part of the servers.

The important point here is that if we are aware of
the point where packetization takes place and modify our
request to fall under that threshold, we could substan-
tially reduce the amount of traffic on the network. The
problem is that as a client, you are limited to the inter-
face that the service provides you. As a result, you have
no direct method to modify the way that you communi-
cate with a service. In order to process a request, a
service requires a certain amount of information. As a
client, if you fail to provide some of that information, the
service does not have to provide a response. In the tradi-
tional sense of services, the client cannot dictate what
and how much information it sends in a request. An im-
portant feature of our proposal is that if a service is
defined with a query-based interface, clients can include
as little or as much information as they need to put in the
request.

LOG of Call Response Time

-3

-2

-1

0

1

2

3

4

8 80 800 8000 80000 800000

Array Size (B)

Lo
g

of
 T

im
e

(m
s)

Local C#

C#-C#

C#-Java

Local Java

Java-Java

Java-C#

Figure 4.Call Overhead Time (log10)

2.6 Our Results (Processing Time)

The next set of results relates to the processing time
required to handle a request. Again, this shows the aver-
age processing time over 100 requests for different array

sizes. We’ll include all 6 sets of tests here (see Figure 4).

This chart shows us the overall turnaround time (form
request to response) of 6 different implementations of ser-
vice calls. Two of them are strictly local and the
remaining four are remote.

The first thing to note is that obviously the local calls
(Local Java and Local C#) have much faster response
times than remote calls. When comparing Java remote to
local calls (for an array size of 800KB) our TS value is 1.48
seconds. This means that you can save 1.48 seconds off of
your processing time if you make the function call local
instead of remote. This may seem meaningless until you
begin to think of this is terms of multiple services and
servers processing multiple requests. In a Net-Centric
world, services will be operating in a communal state,
meaning they’ll all be relying on each other, and processes
running through multiple services will become common-
place. This means that when a user makes a request, that
message could be broken up and passed through multiple
services serially. In other words, first data goes to service
A, then the output of service A is fed to service B and so
on. In this case, any time you can shave off of each ser-
vice call, benefits the entire chain as a whole.

The next thing worth mentioning is that (as with the
bandwidth data) you can see a jump in processing time
around 800Bs of data and higher. Again this can be attrib-
uted to packetization. If clients were aware of that
threshold and could create their requests in such a way as
to avoid the threshold, the time savings would be substan-
tial.

Call Response Time

0

200

400

600

800

1000

1200

1400

1600

8 80 800 8000 80000 800000

Array Size (B)

Ti
m

e
(m

s)

Local C#

C#-C#
C#-Java

Local Java

Java-Java
Java-C#

Figure 5. Call Overhead Time

Also, interesting is that it seems that with relatively
small data sets, Java appears to be more efficient. The
Java-Java and C#-Java implementations stand out as proc-
essing the results faster than their service-based
counterparts. Beyond the 8KB mark, C#-C# seems to be
the clear winner. This can be more clearly seen when
viewing the data on a non-logarithmic scale (see Figure 5).

 5

 6

When viewing the results on the exponential scale,
the differences become much clearer. At an array size of
800KB, the rank from most to least efficient service
process is C#-C#, C#-Java, Java-C#, Java-Java. In fact,
the difference is so drastic that a straight C# implementa-
tion beats out a straight Java implementation by over a
second. For some reason, the combination of the func-
tion we chose to implement as well as the software
components used, resulted in a situation where, given a
choice, C# would be the optimal implementation lan-
guage.

While this research effort wasn’t focusing on im-
plementation questions, it has become apparent that the
service implementation language (or SOAP libraries)
may have something to do with processing time. As a
result, when designing the QBS, this is something we
should take into consideration. Regardless, there cer-
tainly is interesting information that could be gathered in
this area. It would be worthwhile to explore how imple-
mentation language, SOAP libraries, XML parsing
libraries, and server types affect the processing overhead
time of a service call.

2.7 Our Results (Conclusions)

The intent of the above research was to provide a
foundation for the proposal of a QBS. In order to under-
stand the intent of the QBS, one must understand why
there is a need for it. What we have shown above is that
there is without a doubt, an overhead in both processing
time and bandwidth usage when comparing local system
calls to remote service calls. Also, the overhead can be
substantial and there are certain “sweet spots” that
should be targeted.

Ultimately, the point of the research was to show-
case what happens when bandwidth and processing time
is wasted. We’d like to get to a point where we’re resid-
ing completely in the Server Side pattern (see Figure 1)
and this is where our interface is at its most optimal. We
are not proposing that services are bad because they
waste resources. However, what we are proposing is that
when designing service interfaces, they should be flexi-
ble and customizable. The next section of this paper
outlines the concepts for the QBS approach.

3. QUERY BASED SERVICES

The foundational concept for the QBS approach is to
design service interfaces that accept as an argument
statements in a language that describe what the service is
to return. If services can be designed in this way, then the
services can perform any operation that can be repre-
sented in the language. The net result is that clients can
indicate to services precisely what they expect the ser-

vice to provide so that the interaction between client and
service becomes optimal as defined in section 2.2 above.

There is historical precedence to this approach in cur-
rent database technology. Virtually every commercial
database system may be thought of as having a service
architecture based on query statements. In modern data-
bases clients obtain a connection to the database, send a
SQL (Structured Query Language) message to the database
and then retrieve the results. The client is able to obtain
exactly what it needs in (notionally) one request. The re-
sult is our Service Side pattern.

3.1 Two Case Studies

The initial question that needs to be answered when
using QBS is whether the service you are building lends
itself to a language based interface. Database applications
are appropriate based on experience with SQL but what
other types of services are amenable to this approach? We
experimented with two different applications and can form
some generalizations from them.

The first application is a plan service based on the
Combined Arms Planning and Execution System (CAPES)
developed by the Command and Control Directorate
(C2D). CAPES produces a plan data model that is a repre-
sentation of the expected state of a military mission over
the mission lifetime. An ideal candidate for QBS, the ap-
plication is a plan query service that will provide
information about the plan to any requesting client. A cli-
ent could, for example, request the expected fuel level on
1CAB unit at mission time H+3 hours. The reason a ser-
vice is ideal to provide mission data is because high-
resolution military plans are difficult to represent as pure
data. The cause for this difficulty is that time variant func-
tions must be either stored as algorithms (not data) or as
sampled data points. If sampled points are stored, then an
algorithm must be used to interpolate between samples.
The net is that some form of algorithm needs to accom-
pany the data. Using a service as the home for the
algorithm is ideal.

Initially the CAPES plan service was designed to be a
family of services that answered different typical questions
about the plan. Some design effort went into this approach
but it quickly became apparent that the number of services
was expanding explosively. The design was switched to a
query based effort and the results were much more man-
ageable. The approach used to implement the plan service
is described in section 3.2.

A second system is an alert management service. This
service receives alert specifications from clients, monitors
situational awareness information and then generates alerts
if specific conditions are met. The alert is specified using a
query language that specifies the alert conditions. In point

of fact, the alerting service implements two languages:
one for alert conditions and the second to specify the
actions to be taken when the alert triggers.

Both of these examples illustrate that non-database
applications can benefit form using a QBS approach. The
CAPES plan query service has a database feel to it, but
unlike a strict database, the CAPES system combines
algorithms along with the data. The alert application is
clearly not a database but instead is a specification lan-
guage in which clients can indicate what is to be
monitored.

In our opinion it is safe to say that any service could
be implemented using the QBS approach described here.
The reason we feel confident making that statement is
because the SOAP messages sent to invoke services are
actually a type of language, albeit a very simple language
that has only one action (the service invocation), but a
language none the less.

3.2 Implementing Languages

Our experience has shown that the definition and
implementation of the language is the most daunting task
in the adoption of QBS. In the CAPES query system one
designer, after seeing the requirements announced that
the effort to build the query system would exceed a man
year just for the language! The actual level of effort in
this case was more like 2 man months.

Applying the QBS concept proceeds along several
predictable steps that include:

1. Designing the language.
2. Implementing a parser.
3. Implementing an interpreter.

The following discusses these steps in some detail
and describe our experience in their implementation.

Designing the language is the “art” portion of QBS
application. The challenge is this: examine a range of
interesting problems then design a language that makes
representing the solutions to the problems elegant. We
found in both of our test cases that the language was rep-
resented as a collection of operators and arguments.
Arguments fed the operators which performed an opera-
tion on the argument and then produced a result that
could be fed to additional operators. Statements in the
languages can easily be represented as trees with the
operators being the nodes of the trees. Consider the ex-
pression A = B x C + D. This statement can be
represented in a tree form as shown in Figure 6.

=

+

x

A

D

B C

Figure 6. Tree Representation of A=BxC+D

Representing statements in the language in this form is
straight forward in that each node can be an instance of an
object representing nodes. In our languages, each node had
an abstract method called Evaluate. Calling Evaluate
causes the node to evaluate its sub-trees and return the
results of the node. For example, in the figure evaluating
the “+” node would cause it to evaluate the left sub-tree to
get the product of B and C and then evaluate the right sub-
tree to get the value of D. The “+” node would then return
the value of B x C + D to the next higher node.

Using a tree of operator nodes to represent the lan-
guage has a number of useful benefits. First of all, it is
easy to extend the language to add additional features.
Language extension means adding additional nodes. This
is an interesting feature in the context of QBS because it is
possible to extend the service interface without breaking
the calls made by existing clients. The idea is that the new
language features are added to the existing features rather
than replacing them.

A second benefit of the tree representation is that it
can be easily represented in XML. The tree from Figure 6
can be converted into the following XML

<Equals>
 <Value>A</Value>
 <Plus>
 <Times>
 <Value>B</Value>
 <Value>C</Value>
 </Times>
 <Value>D</Value>
 </Plus>
</Equals>

This means that it is possible to use a QBS approach
without having to bother with actually parsing the lan-
guage representation. Using trees to represent the language
and using XML to represent the syntax avoids all the mess
of writing a mini-interpreter. It is up to the client to pro-
duce the language statements in the proper format. If a
client chooses to implement a more conventional (human
readable) infix notation for the language, then that is the
client’s decision.

 7

 8

The third benefit from representing the language as a
tree is in the simplicity of the evaluation. As described
each node has an Evaluate function. The Evaluate
function in our implementations is located in a Node
base class so all of the derived nodes provide an imple-
mentation of this function. Calling the top level node in
the tree effectively performs a recursive tree walk that is
controlled by the individual nodes. For example, in our
implementation of the CAPES query language we have
an “and” node that mimics the && function in C++. Our
implementation of the && evaluates its left sub-tree first,
looks at the result and if the result is false, then the right
sub-tree is not evaluated and a false is returned. Having
each node control the evaluation process for itself simpli-
fies the interpreter design yet provides a sophisticated
implementation.

The fourth benefit of the tree structure is that algo-
rithms can be written that optimize the evaluation of the
tree. For example, an algorithm can be written that
searches for common sub-trees and only evaluates these
once even though they appear in the overall tree several
times. In an application such as our alert service where
statements in the language are repeatedly evaluated (the
alert conditions), tree optimization can be a very useful
tool for reducing the computational load.

3.3 Mobile Code

If a QBS can accept a single statement in a lan-
guage, then why not allow it to accept multiple
statements? The concept would be to allow the client to
produce small snippets of program that could be passed
as an argument to the service and then executed on the
server. Such an idea goes by a number of different
names: agents and mobile code being two of them (mo-
bile code is probably the less pejorative of the two given
the recent bad press agents have been receiving).

One concern brought up by the concept of mobile
code being used as a service interface is how to best pro-
tect the service from malicious code. It is conceivable
that an enemy (or poorly designed client) gaining access
to a service could send a piece of mobile code that would
ask the server to calculate Pi to the last decimal place.
Services that support mobile code would have to be de-
signed to prevent such problems. Perhaps the service
would support a mobile code docking site that provides
an interface to the mobile code that offers up the requi-
site functionality without compromising the server itself.

Microsoft’s managed code concept running under
.NET goes a long way to define how services might be
able to produce reliable docking sites for mobile code.

The .NET application domain hosting technology currently
used by the MS IIS Web server to safely host multiple web
applications on the same server could be applied to mobile
code (Löwy, 2003).

Whatever the technology, mobile code would provide
the ultimate in server flexibility and permit small clients to
offload complex computational tasks to servers.

4. CONCLUSIONS AND FUTURE RESEARCH

Our initial investigation into using languages to define
service interfaces has been very positive. Our research into
the cost of service invocations indicates that anything that
can be done to reduce the number of calls to services and
to reduce the amount of returned data was an effective way
of lowering overhead in a SOA.

We found that implementing a QBS was straight for-
ward and that much of the implementation technology
could be reused in different applications. Further we found
that QBS could be easily extended without breaking clients
that were already in existence.

Our investigation suggests a number of interesting
topics for additional research. Among these are:

1. How to use mobile code to build service inter-
faces.

2. How to develop a toolkit that simplifies the de-
velopment of query based services.

3. How to better quantify the types of services that
would benefit from QBS.

4. How to define rules to help in the development of
the languages used in QBS.

REFERENCES

Pane, J.F. and Joe, L., 2006: Making Better Use of Band-
width: Data Compression and Network Management
Technologies,
http://www.rand.org/pubs/technical_reports/2006/RA
ND_TR216.pdf, xi-xii, 1, 4.

Command and Control Directorate (C2D), 2005: CAPES
Users Manual.

Löwy, J, 2003: .NET Components, O’Reilly & Associates,
Inc., 234-245.

http://www.rand.org/pubs/technical_reports/2006/RAND_TR216.pdf
http://www.rand.org/pubs/technical_reports/2006/RAND_TR216.pdf

	1. LOOKING TO THE FUTURE
	1.1 The Problem with Net-Centricity

	1. LOOKING TO THE FUTURE
	2. QUERY-BASED SERVICE RESEARCH
	2.1 Remote versus Local Function Calls
	2.2 Service Invocation Patterns
	2.3 Researching Web Service Overhead
	2.4 Our Approach to Measuring Invocation Costs
	2.5 Our Results (Bandwidth)
	2.6 Our Results (Processing Time)
	2.7 Our Results (Conclusions)

	3. QUERY BASED SERVICES
	3.1 Two Case Studies
	3.2 Implementing Languages
	3.3 Mobile Code

	4. CONCLUSIONS AND FUTURE RESEARCH

